
1798 C15H23N20+.C1 - AND C18H29N20+.C1 - 

Although the hydrochlorides of (S)-mepivacaine 
and (R)-bupivacaine crystallize in different crystal 
systems, the organization or molecular packing in 
the present two crystals shows pronounced similari- 
ties. The C1 anion is hydrogen bonded to the amide 
and amine N atoms in both cases (Table 6). The 
N(1)...C1---N(8) angle is 134.8 (1) in mepivacaine and 
134.6 (1) ° in bupivacaine. By virtue of the hydrogen 
bonds and the twofold rotational symmetry, endless 
helical chains are formed parallel to the crystallo- 
graphic b axis in both compounds. The chains are 
held together by ordinary van der Waals forces. 
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Abstract. 1-(4-Chlorophenyl)-3-hydroxy-3-phenyl-2- 
propen-l-one, C~sH]IC102, Mr=258 .7 ,  C2/c, a = 
24.324 (4), b = 6.537 (2), c = 15.598 (2) A, /3 = 
93.52 (1) °, V =  2475.5 (9) A 3, z = 8, Dx = 
1.382 g cm -3, A(Mo/Ca) = 0.71069/~, /x = 
2.95 cm-1,  F(000) = 1072, T = 298 K, final R = 0.043 
for 1192 observed reflections. The compound dis- 
plays a strong intramolecular asymmetric hydrogen 
bond [O..-O = 2.471 (4), O - - H  = 1.09 A, IR u(OH) 
stretching frequency = 2577 cm -1, 1H N M R  chemi- 
cal shift of the enolic proton = 16.8 p.p.m.] which 
can be interpreted in terms of resonance-assisted 
hydrogen bonding. The proton localization, that is, 
the preference displayed by the proton for settling on 
an O atom of the/3-diketone fragment rather than 
on the other O atom, is discussed and related to the 
different environments of the two O atoms in the 

* Author to whom correspondence should be addressed. 

0108-2701/92/101798-04506.00 

crystal packing and, in particular, to the asymmetry 
of their C- -H. . .O  short contacts. 

Introduction. fl-Diketones in their enolic tautomeric 
forms have been extensively studied owing to their 
ability to form strong inter- or intramolecular hydro- 
gen bonds (Emsley, 1984; Gilli, Bellucci, Ferretti & 
Bertolasi, 1989; Etter & Vojta, 1989; Gilli & 
Bertolasi, 1990). In general, these compounds are 
stabilized by an intramolecular hydrogen bond (I), 
while less frequently, and as a consequence of  steric 
effects, infinite chains of intermolecular hydrogen- 
bonded molecules are found (II). Accordingly, all the 

A r  I d 2 " ~ d  3 "~Ar 2 

(]) (ii) 
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1,3-diaryl-l,3-propanedione enols, independent of 
the nature of the Ar~ and Ar2 substituents, have 
the structure (I) with a strong hydrogen bond 
characterized by rr delocalization along the 
O:=C--C-- -C--O heterodienic system, shortening of 
O...O distances to 2.432 A and lengthening of O---H 
distances to 1.22 A, though always with a slightly 
asymmetric localization of the proton (Bertolasi, 
Gilli, Ferretti & Gilli, 1991; Jones, 1976; Etter, Jahn 
& Urbaficzyk-Lipkowska, 1987; Williams, 1966; 
Hollander, Templeton & Zalkin, 1973). The zr 
delocalization on the fragment can be measured by 
the use of the antisymmetric vibrational coordinate 
Q = (dl - d4) + (d3 - d2) which is obviously zero 
when the delocalization is complete. Q has been 
found to be correlated with the strength of the 
hydrogen bond evaluated by both O...O distances 
and spectroscopic properties (Gilli et al., 1989; 
Bertolasi et al., 1991). Such interrelated effects have 
been interpreted by a mechanism called RAHB 
(resonance-assisted hydrogen bonding) (Gilli et al., 
1989) through which hydrogen-bond and rr-system 
delocalization reinforce mutually with a gain in 
energy. 

We report here the crystal structure of a new 
1,3-diaryl-l,3-propanedione enol in order to obtain 
further insight into the relationship between struc- 
tural parameters and the nature of the phenyl-ring 
substituents, and to ascertain the factors which con- 
tribute to the formation of the asymmetric hydrogen 
bond. 

Experimental. Colourless needle-shaped crystals were 
obtained from ethanol, 0.08 x 0.21 x 0.40 mm, and 
used for data collection on a CAD-4 diffractometer 
with graphite-monochromated M o K a  radiation. 
Lattice parameters were determined from 25 reflec- 
tions (6-< 0---13°). 2304 unique reflections were 
measured (0 ___ h _< 31, 0 ___ k -< 8, -19- - -1- - -19 ,2-<0 
_< 27 °) in to/20 mode. Three standard reflections 
monitored every 2 h showed no significant change of 
intensity; 1192 reflections were observed [I_> 2tr(lo)]; 
Lp correction applied. Structure solution was carried 
out by direct methods using M U L T A N 8 0  (Main, 
Fiske, Hull, Lessinger, Germain, Declercq & Woolf- 
son, 1980). Full-matrix least-squares refinement (on 
F) with anisotropic parameters for non-H atoms and 
isotropic for H atoms (all found in AF synthesis) was 
performed. Final cycle: 212 parameters, maximum 
shift/e.s.d. = 0.06, R = 0.043, wR = 0.045, S = 1.29, 
W = 4Fo2/[or2(Fo 2) q- (0.04Fo2)2], largest final AF peak 
= 0.18 e A-3. Atomic scattering factors were taken 
from International Tables for  X-ray Crystallography 
(1974, Vol. IV). All calculations were performed 
using the CAD-4 S D P  system of programs (Frenz, 
1978) and P A R S T  (Nardelli, 1983). 

The IR spectrum was recorded on a Bruker IFS88/ 
FT-IR spectrometer from KBr pellets, and the IH 
NMR spectrum in a solution of CDC13 on a Bruker 
FT WP-80 spectrometer. The v(OH) stretching 
frequency was identified according to Ogoshi & 
Nakamoto (1966) and Tayyari, Zeegers-Huyskens & 
Wood (1979) in the weak band at 2577 cm-l ;  the 
enolic proton chemical shift, o-(OH), was found at 
16.8 p.p.m. 

Discussion. Atomic parameters are given in Table 1. 
Interatomic distances, interatomic angles and a selec- 
tion of torsion angles are reported in Table 2.* An 
O R T E P I I  (Johnson, 1976) view of the molecule is 
shown in Fig. 1 and a stereoview of the crystal 
packing along b in Fig. 2. 

The fl-diketone enol fragment forms a strong 
intramolecular hydrogen bond as shown by the 
shortenin~ of the O...O distance [O(1)...O(2) = 
2.471 (4)A] and by a corresponding lengthening of 
the O - - H  one [O(1)--H(1) = 1.09 (4) A]; its strength 
is confirmed by the IR u(O--H) stretching frequency 
of 2577 cm -1 and ~H NMR chemical shift of the 
enolic proton, ~(OH)--16.8 p.p.m. [by comparison 
the hydrogen bond in alcohols has d(O..-O)=2.77 
and d(O--H) _< 1.00 A, u(O--H) = 3400-3600 cm- l  
and 8(OH)=0.5-5p.p .m.] .  At the same time a 
remarkable ~ delocalization along the heterodienic 
system H(1)--O(1)--C(1)=C(2)--C(3)=O(2)  is 
observed, which can be evaluated from the observed 
Q value of 0.030 A to be some 90%. These data are 
in close agreement with those of other crystal struc- 
tures of 1,3-diaryl-l,3-propanedione enols already 
reported, the neutron structural determination of 
dibenzoylmethane included (Jones, 1976). 

The proton is found in asymmetrical position 
between the O atoms [O(2) . . .H(1)=l .44(4)A,  
O(1)--H(1).-.O(2)= 154(2) °] in spite of the very 
short inter-O-atom distance. This is a characteristic 
feature of the hydrogen bond in this class of 
compound, the only known exception being the 
structure of bis(m-bromobenzoyl)methane (Williams, 
Dumke & Rundle, 1962) where the molecule is in a 
special position on a crystallographic mirror and the 
proton symmetry is ascribed to a statistical occupa- 
tional disorder of the two asymmetric enol 
tautomers. 

As far as the proton localization is concerned, 
structural analysis of a series of 1,3-diaryl-l,3- 
propanedione enols (Bertolasi et al., 1991) shows 

* Lists of structure factors, anisotropic thermal parameters and 
fractional coordinates of H atoms have been deposited with the 
British Library Document Supply Centre as Supplementary Publi- 
cation No. SUP 55147 (9 pp.). Copies may be obtained through 
The Technical Editor, International Union of Crystallography, 5 
Abbey Square, Chester CH1 2HU, England. [CIF reference: 
GE0304] 
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Table 1. Positional parameters (x  104, x lOafor the 
H atom) and isotropic/equivalent isotropic thermal 

parameters (/~2) 

Atom H(1) was refined with an isotropic B value. Non-H atoms were 
refined anisotropically; B. a = (4/3)ZiZyflv.a,.aj. 

x y z B/B~ 
0(1) 4018 (1) 10267 (4) -2129 (2) 6.66 (6) 
0(2) 4880 (1) 9687 (3) - 1240 (2) 6.58 (6) 
C(1) 3972 (1) 8298 (5) -2218 (2) 4.15 (7) 
C(2) 4366 (1) 7014 (4) - 1843 (2) 3.72 (6) 
C(3) 4822 (1) 7755 (5) - 1358 (2) 3.91 (6) 
C(4) 5263 (1) 6456 (4) -960 (2) 3.61 (6) 
C(5) 5328 (1) 4430 (5) - 1190 (2) 3.96 (7) 
C(6) 5757 (1) 3269 (5) -837 (2) 4.40 (7) 
C(7) 6122 (1) 4140 (5) -236 (2) 4.03 (7) 
C(8) 6063 (1) 6137 (5) 13 (2) 4.72 (7) 
C(9) 5638 (1) 7287 (5) -347 (2) 4.30 (7) 
C(10) 3481 (I) 7600 (5) -2743 (2) 3.81 (6) 
C(1 !) 3286 (1) 5606 (5) -2713 (2) 4.61 (7) 
C(12) 2819 (1) 5009 (5) -3194 (2) 5.29 (8) 
C(13) 2550 (1) 6393 (6) -3729 (2) 6.23 (9) 
C(14) 2739 (1) 8375 (6) -3783 (2) 6.01 (9) 
C(15) 3200 (1) 8976 (5) -3287 (2) 5,07 (8) 
CI 6662.3 (3) 2677 (2) 210.3 (6) 6.04 (2) 
H(I) 439 (2) 1043 (4) - 171 (2) 14 (1) 

Table 2. lnteratomic distances (A), interatomic angles 
(o) and selected torsion angles (o) 

O(1)---C(1) 1.299 (4) C(7)--C1 1.736 (3) 
O(2)--C(3) 1.283 (4) C(8)--C(9) 1.370 (4) 
C(1)--C(2) 1.377 (4) C00)- -C 0 1) 1.389 (4) 
C(1)--C(10) 1.478 (4) C(10)--C(15) 1.388 (4) 
C(2)--C(3) 1.391 (4) C(11)---C(12) 1,379 (4) 
C(3)--C(4) 1.475 (4) C(12)---C(13) 1.370 (4) 
C(4)--C(5) 1.384 (4) C(13)--C(14) 1.379 (5) 
C(4)----C(9) 1.391 (4) C(14)--C(15) 1.380 (4) 
C(5)--C(6) 1.378 (4) O(I)--H(I)  1.09 (4) 
C(6)--C(7) 1.374 (4) O(2)'"H(1) 1.44 (4) 
C(7)--C(8) 1.372 (5) 

O(1)--C(1)--C(2) 120.4 (3) C(6)--C(7)--C1 119.1 (2) 
O(1)--C(1)---C(10) 115.2 (3) C(8)--C(7)---C1 120.0 (2) 
C(2)--C(I)--C(10) 124.4 (3) C(7)--C(8)--C(9) 119.7 (3) 
C( 1 )--C(2)--C(3) 122.0 (3) C(4)--C(9)--C(8) 120.9 (3) 
O(2)----C(3)---C(2) 119.9 (3) C(1)--C(10)--C(I 1) 122.5 (3) 
O(2)----C(3)----C(4) 115.8 (3) C(1)--C(10)--C(15) 119.3 (3) 
C(2)--C(3)----C(4) 124.3 (2) C(I 1)----C(10)---C(15) 118.2 (3) 
C(3)---C(4)--C(5) 122.2 (3) C(10)---C(I l)---C(12) 121.3 (2) 
C(3)---C(4)--C(9) 119.6 (3) C(I 1)--C(12)--C(13) 119.4 (3) 
C(5)---C(4)---C(9) 118.1 (2) C(12)---C(13)--C(14) 120.6 (3) 
C(4)---C(5)--C(6) 121.3 (3) C(13)--C(14)--C(15) 119.7 (3) 
C(5)-----C(6)----C(7) 119.1 (3) C(10)-----C(15)----C(14) 120.7 (3) 
C(6)---C(7)--C(8) 120.8 (3) O(1)---H(1)...O(2) 154 (2) 

O(1)---C(l)---C(2)---C(3) 0.2 (5) O(2)--C(3)---C(2)--C(1) 1.0 (4) 
O(1)---C(1)---C(10)---C(1 l) - 161.8 (3) 
O(1)---C( 1 )--C(10)---C(15) 18.0 (4) 

O(2)--C(3)--C(4)--C(5) - 164.5 (3) 
O(2)--C(3)--C(4)--C(9) 13.8 (4) 

that there are two distinct factors affecting the asym- 
metric position chosen by the H atom along the 
O(1)...O(2) coordinate. One factor is chemical and 
arises from the electronegativity difference between 
the Ar~ and Ar2 groups: the proton has been shown 
to prefer the side of the more electronegative substit- 
uent (Emsley, 1984; Bertolasi et al., 1991); the other 
is connected with the different crystal environment 
around the two O atoms: the proton choses the O 
atom making less C--H...O contacts with other H 
atoms of the structure. The final situation has been 
found to be a subtle equilibrium between these two 
factors and it can be said that the proton settles on 
the O atom where the minimum partial negative 

charge has been induced by both the nature of 
1,3-substituents and short contacts. 

From the point of view of the substituents the enol 
proton should be bonded, in the present structure, to 
the carbonyl group carrying the p-chlorophenyl 
moiety. So the opposite situation found in the crystal 
should arise from the different crystal environments 
of the two O atoms, as actually shown by the data of 
Table 3 which reports the relevant inter- and intra- 
molecular C--H...O contacts. A more quantitative 
evaluation of the relative importance of such 
C--H...O interactions can be obtained by computing 
their bond valences, s, which are calculated as s = 
exp[(Ro-R)/B], B and Ro being semiempirical 
parameters for the O...H interaction having values of 
0.37 and 0.88 A, and R being the actual O---H con- 
tact distance (Brown & Shannon, 1973; Brown & 
Altermatt, 1985). The results are reported in Table 3 
together with the sums Y~s[O(1)] and Y.s[O(2)] which 
are the global contributions of the C--H...O interac- 
tions to the O(1) and 0(2) atoms, respectively. The 
positive difference A = Y.s[O(2)]- Y.s[O(1)] = 0.018 is 
indicative of a greater interaction of the protons of 
the environment with the 0(2) atom and, therefore, 
of a greater negative charge induced on it by polari- 
zation which must be greater than the small positive 
charge induced by the p-chlorophenyl group. 
Accordingly, the proton is found to be bonded to the 
O(1) atom. It seems of interest to remark that this is 

Ol H1 02 

"~" c12 

F i g .  1. O R T E P I I  ( J o h n s o n ,  1976)  v i e w  of  the molecule showing 
the thermal ellipsoids at 30% probability. 

F i g .  2. Stereoview of  the unit cell. 

/ 
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Table 3. C - - H . . . O  contact distances (-<3/~),  bond 
valences (s) and their sums for  the two atoms O(1) and 

0(2)  o f  the fl-diketone fragment 

O(I)...H(15) 

Symmetry 
operation 

x, y, z 

O(2)--.H(9) x, y, z 
O(2)...H(6) x, y + I, z 
O(2)...H(9) 1 - x, 2 - y, - z 
O(2)...H(5) x, y + 1, z 

d s Zs 
2.39 (3) 0.017 0.017 

2.45 (3) 0.014 
2.61 (3) 0.009 
2.72 (3) 0.007 
2.84 (3) 0.005 0.035 

a = Ys[O(2)] - Zs[O( l )] = 0.018 

a case where the intermolecular  and in t ramolecular  
forces are able to modify  the chemical  const i tut ion of  
the molecule. 

The entire molecule is approximate ly  planar.  The 
dihedral  angles between the f l-diketone mean  plane 
[O(1), C(1), C(2), C(3), 0(2): Y(A/tr) 2 =  16.6] and the 
two phenyl  rings [C(4)-C(9): Y~(A/tr) 2 =  12.0 and 
C(10)-C(15): Y(A/tr) 2=26 .6 ]  are 15.1 (1) and 
18.9 (1) ° respectively. Al though this is a situation 
favourable  for a 7r-electronic delocalization on the 
whole molecule, C(1)--C(10)  and C(3)--C(4)  bond 
distances of  1.478 (4) and 1.475 (4),~ can be con- 
sidered pure C(sp2)---C(sp 2) single-bond distances 
indicat ing that  the phenyl  rings do not participate in 
the rr delocalization of  the f l-diketone enol frag- 
ment. This seems to suggest that the planari ty  
systematically observed in this class of  compounds  
(Bertolasi et al., 1991), could be at tr ibuted to a 
greater packing efficiency of  p lanar  objects and/or  to 
the energetically favourable  C - - H . . . O  interactions of  
the C---O and C = O  atoms with the o-phenyl H 
atoms (Table 3). 

We are indebted to Professor P. L. Caramel la  and 
Dr  T. Bandiera (Universi ty of  Pavia) for providing 
the crystals. 
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A Urea with Non-Planar Nitrogen-Bonding Geometry 
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A b s t r a c t .  (4R,5S)- 1,5-Dimethyl-4-phenylimidazol-  
idin-2-one, CIIHIaN20 , Mr = 190.2, or thorhombic ,  
P2~2121, a = 6.161 (2), b = 8.045 (3), c = 
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20.811 (6) A, V =  1031.5 A 3, Z : 4, Dx = 
1.23 g cm -3, Mo Ka radiation,  ,~ = 0.71069 ,~, /z = 
0.75 c m -  i, F(000) = 408, T = 293 K, R = 0.041 for 
839 observed reflections. The N-methyl  a tom of  this 
urea derivative, a chiral auxil iary in asymmetr ic  syn- 
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